

**27.** Let one of the odd positive integer be x

then the other odd positive integer is x + 2

their sum of squares =  $x^2 + (x + 2)^2$ 

 $= x^2 + x^2 + 4x + 4$ 

 $= 2x^2 + 4x + 4$ 

Given that their sum of squares = 290

 $2x^2 + 4x + 4 = 290$ 

 $2x^2 + 4x = 290 - 4 = 286$ 

 $2x^2 + 4x - 286 = 0$ 

 $2(x^2 + 2x - 143) = 0$ 

 $x^2 + 2x - 143 = 0$ 

 $x^2 + 13x - 11x - 143 = 0$ 

x(x + 13) - 11 (x + 13) = 0

(x - 11) = 0, (x + 13) = 0

Therefore, 
$$x = 11$$
 or  $-13$ 

We always take positive value of x

So, x = 11 and (x + 2) = 11 + 2 = 13

Therefore, the odd positive integers are 11 and 13.

**28.**  $2x^2 + kx + 3 = 0$ 

 $\therefore a = 2, b = k, c = 3$ 

We know that, roots of given equation are equal.

$$\therefore b^{2} - 4ac = 0$$
  
$$\therefore k^{2} - 4(2)(3) = 0$$
  
$$\therefore k^{2} - 24 = 0$$
  
$$\therefore k^{2} = 24$$
  
$$\therefore k = \pm 2\sqrt{6}$$

29. Three-digit numbers that is divisible by 7 are : 105, 112, 119, ......, 994. which gives the AP.

$$\therefore a = 105, d = 112 - 105 = 7, a_n = l = 994$$
$$a_n = a + (n - 1)d$$
$$\therefore 994 = 105 + (n - 1)7$$
$$\therefore 142 = 15 + n - 1$$
$$\therefore 142 = 14 + n$$
$$\therefore n = 142 - 14$$
$$\therefore n = 128$$

Therefore, 128 three-digit numbers are divisible by 7.

30. A  
B  
C  
In 
$$\triangle$$
 ABC;  $\angle B = 90^{\circ}$   
3 cot A = 4  
 $\therefore$  cot A =  $\frac{4}{3}$   
 $\therefore \frac{AB}{BC} = \frac{4}{3}$   
 $\therefore \frac{AB}{4} = \frac{BC}{3} = k$ , where k is positive real number.  
 $\therefore$  AB = 4k, BC = 3k

According to Pythagoras Theorem,

$$AC^{2} = AB^{2} + BC^{2}$$
  

$$\therefore AC^{2} = (4k)^{2} + (3k)^{2}$$
  

$$\therefore AC^{2} = 16k^{2} + 9k^{2}$$
  

$$\therefore AC^{2} = 25k^{2}$$
  

$$\therefore AC = 5k$$
  

$$\therefore sin A = \frac{BC}{AC} = \frac{3k}{5k} = \frac{3}{5},$$
  

$$cos A = \frac{AB}{AC} = \frac{4k}{5k} = \frac{4}{5},$$
  

$$tan A = \frac{BC}{AB} = \frac{3k}{4k} = \frac{3}{4}$$
  

$$LHS = \frac{1 - tan^{2}A}{1 + tan^{2}A} = \frac{1 - \frac{9}{16}}{1 + \frac{9}{16}} = \frac{7}{25}$$
  

$$RHS = cos^{2} A - sin^{2} A = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}$$
  

$$\therefore LHS = RHS$$
  

$$\therefore \frac{1 - tan^{2} A}{1 + tan^{2} A} = cos^{2} A - sin^{2} A$$
  
**31.**  $sin(A - B) = \frac{1}{2}$   $cos (A + B) = \frac{1}{2}$   

$$\therefore sin(A - B) = sin 30^{\circ} \therefore cos(A + B) = cos 60^{\circ}$$
  

$$\therefore A - B = 30^{\circ}...(1) \therefore A + B = 60^{\circ} ...(2)$$
  
Adding equation (1) and (2),  
 $(A - B) + (A + B) = 30^{\circ} + 60^{\circ}$   

$$\therefore A - B + A + B = 90^{\circ}$$
  

$$\therefore A - B + A + B = 90^{\circ}$$
  

$$\therefore A = 45^{\circ}$$
  
Put  $A = 45^{\circ}$  in equation (1),  
 $A - B = 30^{\circ}$   

$$\therefore B = A - 30^{\circ}$$
  

$$\therefore B = 45^{\circ} - 30^{\circ}$$
  

$$\therefore B = 15^{\circ}$$
  
Hence,  $A = 45^{\circ}$  and  $B = 15^{\circ}$ .

## **32.** For such case

$$\angle$$
 POQ +  $\angle$  PTQ = 180°

$$\therefore \quad 110^\circ + \angle PTQ = 180^\circ$$

$$\therefore \ \ \angle \ PTQ = 180^{\circ} - 110^{\circ}$$
$$= 70^{\circ}$$

**33.** The edge of the cube = l = 5 cm

For hemisphere, Radius =  $r = \frac{d}{2} = \frac{4.2}{2} = 2.1$  cm

The surface area of the block

= TSA of cube - base area of hemisphere + CSA of hemisphere

 $= 6l^2 - \pi r^2 + 2\pi r^2$ 

$$= 6l^2 + \pi r^2$$

$$= 6(5)^2 + \left(\frac{22}{7} \times 2.1 \times 2.1\right)$$

- = 150 + 13.86
- $= 163.86 \text{ cm}^2$

Thus, the total surface area of the block will be 163.86  $\rm cm^2.$ 

| -2 | 4 |   |  |
|----|---|---|--|
| -  | - | ٠ |  |
|    |   |   |  |
|    |   |   |  |

| Number of<br>mangoes (class) | Number of boxes $(f_i)$ | <i>x</i> <sub><i>i</i></sub> | u <sub>i</sub> | $f_i u_i$             |
|------------------------------|-------------------------|------------------------------|----------------|-----------------------|
| 50-52                        | 15                      | 51                           | -2             | -30                   |
| 53-55                        | 110                     | 54                           | -1             | -110                  |
| 56-58                        | 135                     | 57 = <i>a</i>                | 0              | 0                     |
| 59-61                        | 115                     | 60                           | 1              | 115                   |
| 62-64                        | 25                      | 63                           | 2              | 50                    |
| Total                        | $\Sigma f_i = 400$      | —                            | _              | $25 = \Sigma f_i u_i$ |

Mean 
$$\overline{x} = a + \frac{\Sigma f_i u_i}{\Sigma f_i} \times h$$
  
 $\therefore \overline{x} = 57 + \frac{25}{400} \times 3$   
 $\therefore \overline{x} = 57 + 0.19$   
 $\overline{x} = 57.19$ 

So, Mean number of mangoes kept in a packing box is 57.19.

Here, the step deviation method is used to find the mean.

**35.** We have, 
$$\overline{x} = a + \frac{\Sigma f_i d_i}{\Sigma f_i}$$
  
 $\therefore$  from given values,  
 $\overline{x} = 30 + \frac{(-26)}{13}$   
 $= 30 - \frac{26}{13}$   
 $= 30 - 2$   
 $\overline{x} = 28$ 

- **36.** Total number of balls in the bag = 3 + 5 = 8
  - $\therefore$  The total number of autcomes = 8
  - (i) Suppose event A drawn ball is red.

$$\therefore P(A) = \frac{\text{Number of red ball}}{\text{Total number of ball}}$$

 $\therefore P(A) = \frac{3}{8}$ 

(ii) Suppose event B drawn ball is not red.

$$\therefore P(B) = \frac{\text{Then number of balls that are not red}}{\text{Total number of ball}}$$
$$\therefore P(B) = \frac{8-3}{8}$$
$$\therefore P(B) = \frac{5}{8}$$

- **37.** Possible outcomes in throwing a die = 6(1, 2, 3, 4, 5, 6)
  - (i) Suppose A be the event getting a number multiple of 3 on die.

These are 2 numbers 3 and 6 which multiple of 3 among 1 to 6

The number of outcomes favourable to A = 2

$$\therefore P(A) = \frac{2}{6} = \frac{1}{3}$$

(ii) Suppose B be the event getting the number 2 on die.

The number 2 comes only one time.

The number of outcomes favourable to B = 1

$$\therefore P(B) = \frac{1}{6}$$

Section-C

**38.** 
$$\alpha$$
,  $\beta$  roots of  $f(x) = kx^2 + 4x + 4$   
Given  $\alpha^2 + \beta^2 = 24$   
We know  $\alpha + \beta = \frac{-b}{a} = \frac{-4}{k}$   
 $\alpha\beta = \frac{c}{a} = \frac{4}{k}$   
 $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$   
 $\left(\frac{-4}{k}\right)^2 = 24 + 2\left(\frac{4}{k}\right)$   
 $\frac{4^2}{k^2} = 24 + 2\left(\frac{4}{k}\right)$   
 $16 = 24k^2 + 8k$   
 $2 = 3k^2 + k$   
 $0 = 3k^2 + k - 2$   
 $0 = 3k(k + 1) - 2(k + 1)$   
 $0 = (k + 1)(3k - 2)$   
 $\therefore k = -1, \frac{2}{3}$ 

**39.** Let the quadratic polynomial be  $ax^2 + bx + c$  and its zeroes be  $\alpha$  and  $\beta$ .

 $\therefore \alpha + \beta = \frac{1}{4} \quad \text{and} \quad \alpha\beta = -\frac{1}{4}$  $\therefore \frac{-b}{a} = \frac{1}{4} \quad \text{and} \quad \frac{c}{a} = -\frac{1}{4}$  $\therefore \text{ if } a = 4, \ b = -1 \text{ and } c = -1$ 

So, one quadratic polynomial which fits the given conditions is  $4x^2 - x - 1$ . You can check that any other quadratic polynomial that fits these conditions will be of the form  $k(4x^2 - x - 1)$ , where k is real.

## **40.** Given AP is 3, 8, 13, ...., 253

 $\therefore a = 3, d = 8 - 3 = 5, a_n = 253$  $a_n = a + (n - 1)d$  $\therefore 253 = 3 + (n - 1)5$  $\therefore 253 - 3 = (n - 1)5$  $\therefore \frac{250}{5} = n - 1$  $\therefore n - 1 = 50$  $\therefore n = 51$ 

Therefore, n = 51, the last 20<sup>th</sup> term of the given series is the 32<sup>nd</sup> term.

$$a_{32} = a + 31d$$
  
= 3 + 31(5)  
= 3 + 155  
$$a_{32} = 158$$

Therefore, the 20<sup>th</sup> term from the last term of the AP is 158.

41. 
$$a_{12} = 37, d = 3, a =$$
,  $S_{12} =$   
Now,  $a_{12} = 37$   
 $\therefore a + 11d = 37$   
 $\therefore a + 33 = 37$   
 $\therefore a + 33 = 37$   
 $\therefore a = 37 - 33$   
 $\therefore a = 4$   
 $S_n = \frac{n}{2} [2a + (n - 1)d]$   
 $\therefore S_{12} = \frac{12}{2} [2(4) + (12 - 1)(3)]$   
 $= 6 [8 + 33]$   
 $= 6 \times 41$   
 $\therefore S_{12} = 246$   
42.  $AP = \frac{3}{7} AB$   
 $\therefore \frac{AB - AP}{AP} = \frac{7 - 3}{3}$   
 $\therefore \frac{AB - AP}{AP} = \frac{7 - 3}{3}$   
 $\therefore \frac{AB - AP}{AP} = \frac{3}{4}$   
 $\therefore AP : PB = m_1 : m_2 = 3 : 4$ 

Thus, point P (x, y) divides the line segment connecting A (-2, -2) and B (2, -4) in the ratio  $m_1 : m_2 = 3 : 4$ .  $\therefore$  The co-ordinates of the dividing point P

$$= \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$
  
$$\therefore (x, y) = \left(\frac{3(2) + 4(-2)}{3 + 4}, \frac{3(-4) + 4(-2)}{3 + 4}\right)$$
  
$$\therefore (x, y) = \left(\frac{6 - 8}{7}, \frac{-12 - 8}{7}\right)$$
  
$$\therefore (x, y) = \left(-\frac{2}{7}, -\frac{20}{7}\right)$$

Hence, the co-ordinates of P  $\left(-\frac{2}{7}, -\frac{20}{7}\right)$ .

**43.** Given : O (p, r) has QM and QN tangents drawn to a circle from an external point Q.

To prove : QM = QN Figure : W



Proof :Join PQ, PM and PN. Then  $\angle$ PMQ and  $\angle$ PNQ are right angles because these angles are between the radiiand tangents and according to theorem 10.1 they are right angles.

Now, in  $\triangle PMQ$  and  $\triangle PNQ$ ,

| PM = PN                                  | (Radii of the same circle) |
|------------------------------------------|----------------------------|
| PQ = PQ                                  | (Common)                   |
| $\angle PMQ = \angle PNQ$                | (Right angle)              |
| Therefore, $\Delta PMQ \cong \Delta PNQ$ | (RHS)                      |
| $\therefore QM = QN$                     | (CPCT)                     |
|                                          |                            |

44

In two P concentric circles a chord of a circle with large radius touches a small circle.

Large circle radii PB = 25 cm Small circle radii PM = 24 cm PM  $\perp$  AB,  $\angle$ PMB = 90  $\therefore$  According to any pythagoras Theorem, PM<sup>2</sup> + MB<sup>2</sup> + PB<sup>2</sup>  $\therefore (24)^2 + MB^2 = (25)^2$   $\therefore 576 + MB^2 = 625$   $\therefore MB^2 = 625 - 576$   $\therefore MB^2 = 49$   $\therefore MB = 7$  cm M is a midpoint of chord AB AB = 2 MB  $= 2 \times 7$ AB = 14 cm

5 cm

В

cm

## **45.** Here, r = 15, $\theta = 60^{\circ}$

Area of smaller portion

$$= \frac{360}{360}$$

$$= \frac{3.14 \times 15 \times 15 \times 60}{360}$$

$$= \frac{3.14 \times 15 \times 15 \times 60}{100 \times 60 \times 6}$$

$$= \frac{314 \times 5 \times 3 \times 15}{100 \times 6}$$

$$= \frac{157 \times 2 \times 5 \times 3 \times 15}{100 \times 2 \times 3}$$

$$= \frac{157 \times 5 \times 15}{100}$$

$$= \frac{11775}{100}$$

 $\pi r^2 \theta$ 



 $\therefore$  Area of smaller portion = 117.75 cm<sup>2</sup>

Area of larger portion

= Area of full circle – Area of smaller portion  
= 
$$\pi r^2 - 117.75$$
  
=  $(3.14 \times 15 \times 15) - 117.75$   
=  $\left(\frac{314 \times 5 \times 3 \times 15}{100}\right) - 117.75$   
=  $\left(\frac{157 \times 2 \times 5 \times 3 \times 15}{10 \times 10}\right) - 117.75$   
=  $\frac{157 \times 3 \times 15}{10} - 117.75$   
= 706.50 - 117.75  
= 588.75 cm<sup>2</sup>

∴ Area of larger portion is 588.75 cm<sup>2</sup>.

**46.** Here, total number of cards = 52

(i) Suppose event A is the king of red colour (king of red and king of diamond).

$$\therefore P(A) = \frac{\text{Number of kings of red colour}}{\text{Total number of outcomes}}$$

$$\therefore P(A) = \frac{2}{52}$$
$$\therefore P(A) = \frac{1}{26}$$

(ii) Suppose event B is a red face card.

 $\therefore P(B) = \frac{\text{Number of red face card}}{\text{Total number of outcomes}}$  $\therefore P(B) = \frac{6}{52}$  $\therefore P(B) = \frac{3}{26}$ (iii) Suppose event C is a spade card (13).

$$\therefore P(C) = \frac{\text{Number of getting a spade card}}{\text{Total number of outcomes}}$$
$$\therefore P(C) = \frac{13}{52} = \frac{1}{4}$$

## Section-D

**47.** Let the speed of car A is  $x \, km/h$  and car B is  $y \, km/h \, (x > y)$ 

A

If the cars move in the same directions, they meet each other in 5 hours at point P.

B P

Distance = Time x speed

In 5 hours car A running distance  $AP = 5x \ km$  and in 5 hours car B running distance  $BP = 5y \ km$ .

 $\therefore \text{ Now, AB} = 100 \ km$  $\therefore \text{ AP} - \text{BP} = 100 \quad (\text{A} - \text{B} - \text{P})$ 

 $\therefore 5x - 5y = 100$ 

 $\therefore x - y = 20....(1)$ 

A Q B

If the cars move towards each other in 60 minutes = 1 hours at point Q.

In 1 hours car A running distance  $AQ = x \ km$  and in 1 hours car B running distance  $BQ = y \ km$ .

- $\therefore$  Now, AB = 100 km
- $\therefore AQ + BQ = 100 \qquad (A Q B)$   $\therefore x + y = 100 \qquad \dots (1)$ Add equation 1 & 2 x - y = 20  $\frac{x + y = 100}{2x = 120}$   $\therefore x = \frac{120}{2}$   $\therefore x = 60 \text{ km/h}$ From (2)  $\therefore 60 + y = 100$  $\therefore y = 100 - 60$
- $\therefore y = 40 \ km/h$
- $\therefore$  The speed car A is 60 km/h and car B is 40 km/h.

**48.** Suppose, present age of Jacob is x year and present age of his son is y year.

After five years,

Age of Jacob is (x + 5) years

Age of his son is (y + 5) years.

According to the first condition,

$$x + 5 = 3 (y + 5)$$
  

$$\therefore x + 5 = 3y + 15$$
  

$$\therefore x - 3y = 10$$
 ...(1)  

$$\therefore x = 3y + 10$$
 ...(2)

Before 5 years,

Age of Jacob is (x - 5) years

Age of his son is (y - 5) years.

According to the second condition,

$$x - 5 = 7 (y - 5)$$
  
∴  $x - 5 = 7y - 35$   
∴  $x - 7y = -30$  ...(3)

9

Put value of equation (2) in equation (3)

$$x - 7y = -30$$
  

$$\therefore 3y + 10 - 7y = -30$$
  

$$\therefore 3y - 7y = -30 - 10$$
  

$$\therefore -4y = -40$$
  

$$\therefore y = 10$$
  

$$y = 10 \text{ in equation (2)}$$

Put y = 10 in equation (2)

$$x = 3y + 10$$
  
 $\therefore x = 3(10) + 10 = 30 + 10 = 40$   
 $\therefore x = 40$ 

Hence, the present age at Jacob's and his son is 40 years and 10 year.

49.



It is given that  $\frac{PS}{SQ} = \frac{PT}{TR}$ 

 $\therefore$  ST || QR (Theorem 6.1)

 $\therefore \angle PST = \triangle PQR$  (corresponding angle) ...(1)

Also it is given that,  $\angle PST = \angle PRQ$ ...(2)

As per eq<sup>n</sup>. (1) & (2),

$$\angle PRQ = \angle PQR$$

- $\therefore$  PQ = PR (sides opposite the equal angles)
- i.e.,  $\Delta PQR$  is an isosceles triangle.
- 50. In the proof below, the point D is on the side BC of  $\triangle ABC$  such that  $\angle ADC \cong \angle BAC$ , than prove that  $CA^2 = CB \cdot CD$ . Given: point D is on the side BC of  $\triangle$ ABC such that  $\angle$ ADC  $\cong \angle$ BAC.

To Prove :  $\underline{CA^2} = \underline{CB \cdot CB}$ .

Proof :  $\triangle$ CDA and  $\triangle$ CAB have  $\angle$ ADC =  $\angle$ <u>BAC</u>.

(Given)

And  $\angle ACD = \angle BCA$  [Same angle (common)]

 $\therefore$  <u>AA condition</u> by condition,  $\Delta$ CDA ~  $\Delta$ CAB

$$\therefore \frac{\text{CD}}{\text{CA}} = \frac{\text{CA}}{\text{CB}}$$

- $\therefore$  CB CD = CA CA
- $\therefore$  CA<sup>2</sup> = CB CD

51. Here AB is the tower. C and D are two observation point respectively 3m and 12m from bottom of tower.

In  $\triangle ABC \ \angle B = 90^{\circ}$  $\therefore$  BC = 3 m and BD = 12 m $\therefore$  Suppose  $\angle ACB = \theta$ , then  $\angle ADB = 90 - \theta$ (Complementry angles) In right atriangle ABC  $tan\theta = \frac{AB}{BC}$  $\therefore tan\theta = \frac{AB}{3}$ ....(1) In right atriangle ABD  $tan (90 - \theta) = \frac{AB}{BD}$  $\therefore \cot\theta = \frac{AB}{12}$ ....(2)  $(\therefore \tan (90 - \theta) = \cot \theta)$ From (1) & (2)  $tan \ \theta \cdot cot \ \theta = \frac{AB}{3} \times \frac{AB}{12}$  $\therefore 1 = \frac{AB^2}{36}$  $(\therefore \tan \theta \cdot \cot \theta = 1)$  $\therefore 36 = AB^2$  $\therefore AB = 6 m$  $\therefore$  The height of the tower = 6 m **52.** Hemisphere Cone Cylinder

$$D \qquad C \rightarrow 3 m \leftarrow B \\ 1 \leftarrow 12 m \longrightarrow 1$$

r = 60 cm $r = 60 \, {\rm cm}$  $r = 60 \, \mathrm{cm}$ h = 120 cm H = 180 cm

Total volume of solid = Volume of hemisphere + Volume of cone

$$= \frac{2}{3} \pi r^{3} + \frac{1}{3} \pi r^{2}h$$

$$= \frac{1}{3} \pi r^{2}(2r + h)$$

$$= \frac{1}{3} \times \frac{22}{7} \times 60 \times 60 \times (2 \times 60 + 120)$$

$$= \frac{22 \times 20 \times 60}{7} \times (120 + 120)$$

$$= \frac{22 \times 20 \times 60 \times 240}{7}$$

$$= \frac{6336000}{7} \text{ cm}^{3}$$

Volume of cylinder  $=\pi r^2 H$ 

$$= \frac{22}{7} \times 60 \times 60 \times 180$$
$$= \frac{14256000}{7} \text{ cm}^{3}$$

The volume of water left in the cylinder

= Volume of cylinder – Volume of solid

$$= \frac{14256000}{7} - \frac{6336000}{7}$$
$$= \frac{14256000 - 6336000}{7}$$
$$= \frac{7920000}{7}$$
$$= 1131428.57 \text{ cm}^{3}$$
$$= \frac{1131428.57}{1000000} \text{ m}^{3}$$
$$= 1.131 \text{ m}^{3} \text{ (Approx)}$$

53. Cylinder

Hemisphere

h = 1.45 m = 145 cm r = 30 cmr = 30 cm

The total surface area of the bird-bath

= CSA of cylinder + CSA of hemisphere

$$= 2\pi rh + 2\pi r^{2}$$

$$= 2\pi r (h + r)$$

$$= 2 \times \frac{22}{7} \times 30 \times (145 + 2)$$

$$= 2 \times \frac{22}{7} \times 30 \times 175$$

 $= 33000 \text{ cm}^2$ 

Thus, TSA of the bird-bath is 33000  $\mbox{cm}^2=$  3.3  $\mbox{m}^2$ 

30)

| class   | frequency $(f_i)$ | cumulative frequency cf        |
|---------|-------------------|--------------------------------|
| 10 - 20 | 12                | 12                             |
| 20 - 30 | 30                | 12 + 30 = 42                   |
| 30 - 40 | а                 | 42 + a                         |
| 40 - 50 | 65                | 42 + a + 65 = a + 107          |
| 50 - 60 | b                 | a + b + 107                    |
| 60 - 70 | 25                | a + b + 107 + 25 = a + b + 132 |
| 70 - 80 | 18                | a + b + 132 + 18 = a + b + 150 |

Here,  $\sum fi = 230$ 

*but*,  $\sum fi = a + b + 150$ 

$$\therefore a+b+150=230$$

 $\therefore a + b = 230 - 150$ 

$$\therefore a + b = 80 \qquad \dots (1)$$

The median is 46, which is lies in the class 40 - 50.

So, median class is 40 - 50.

$$l = 40, f = 65, cf = a + 42, h = 10, \frac{n}{2} = \frac{230}{2} = 115$$
  
Median M = 1 +  $\left(\frac{\frac{n}{2} - cf}{f}\right) \times h$   
 $\therefore 46 = 40 + \left(\frac{115 - (a + 42)}{65}\right) \times 10$   
 $\therefore 46 - 40 = \left(\frac{115 - a - 42}{13}\right) \times 2$   
 $\therefore 6 = \left(\frac{73 - a}{13}\right) \times 2$   
 $\therefore 6 = \left(\frac{73 - a}{13}\right) \times 2$   
 $\therefore \frac{3}{2} = 73 - a$   
 $\therefore a = 73 - 39$   
 $\therefore a = 34$   
From (1)  
 $34 + b = 80$   
 $\therefore b = 80 - 34$   
 $\therefore b = 46$   
Hence  $a = 34$  and  $b = 46$